Convex Sobolev inequalities and spectral gap Inégalités de Sobolev convexes et trou spectral
نویسندگان
چکیده
This note is devoted to the proof of convex Sobolev (or generalized Poincaré) inequalities which interpolate between spectral gap (or Poincaré) inequalities and logarithmic Sobolev inequalities. We extend to the whole family of convex Sobolev inequalities results which have recently been obtained by Cattiaux [11] and Carlen and Loss [10] for logarithmic Sobolev inequalities. Under local conditions on the density of the measure with respect to a reference measure, we prove that spectral gap inequalities imply all convex Sobolev inequalities with constants which are uniformly bounded in the limit approaching the logarithmic Sobolev inequalities. We recover the case of the logarithmic Sobolev inequalities as a special case. Résumé Cette note est consacrée à la preuve d’inégalités de Sobolev convexes (ou inégalités de Poincaré généralisées) qui interpolent entre des inégalités de trou spectral (ou de Poincaré) et des inégalités de Sobolev logarithmiques. Nous étendons à la famille des inégalités de Sobolev convexes toute entière des résultats qui ont été obtenus récemment par Cattiaux [11] et Carlen et Loss [10] pour des inégalités de Sobolev logarithmiques. Sous des conditions locales sur la densité de la mesure par rapport à une mesure de référence, nous démontrons que les inégalités de trou spectral entrâınent toutes les inégalités de Sobolev convexes avec des constantes qui sont bornées uniformément dans la limite qui approche les inégalités de Sobolev logarithmiques. Nous retrouvons le cas des inégalités de Sobolev logarithmiques comme un cas particulier.
منابع مشابه
A Remark on Spectral Gap and Logarithmic Sobolev Inequalities for Conservative Spin Systems
We observe that a class of conditional probability measures for unbounded spin systems with convex interactions satisses Poincar e and logarithmic Sobolev inequalities. For the corresponding conservative dynamics in a box of linear size L we show that the inverse of the spectral gap and the logarithmic Sobolev constant scale as L 2 in any dimension. 2000 MSC: 60K35
متن کاملIrregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation
We prove essential self-adjointness of Kolmogorov operators corresponding to gradient systems with potentials U such that DU is not square integrable with respect the invariant measure (irregular potentials). An application is given to the Cahn– Hilliard–Cook equation in dimension one. In this case the spectral gap is proved for the correspondig semigroup. We also obtain a log-Sobolev inequalit...
متن کاملModified Logarithmic Sobolev Inequalities in Discrete Settings
Motivated by the rate at which the entropy of an ergodic Markov chain relative to its stationary distribution decays to zero, we study modified versions of logarithmic Sobolev inequalities in the discrete setting of finite Markov chains and graphs. These inequalities turn out to be weaker than the standard log-Sobolev inequality, but stronger than the Poincare’ (spectral gap) inequality. We sho...
متن کاملExtremal functions for the anisotropic Sobolev inequalities. Fonctions minimales pour des inégalités de Sobolev anisotropiques
The existence of multiple nonnegative solutions to the anisotropic critical problem
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کامل